1) a) \(U(x_1, x_2) = x_1 + x_2 \)

(Notice that there could be other \(U \) functions that could represent these preferences: e.g. \(V(x_1, x_2) = 2x_1 + 2x_2 \).)

b)

![Graph](image)

c) \(MRS = \text{Slope of IC} = -1 \). This is because the person would be willing to give up at most 1 unit of \(x_2 \) to get one more \(x_1 \).

d) \(p_1 x_1 + p_2 x_2 = m \)

\[2x_1 + 3x_2 = 60 \]

![Graph](image)

e) Since \(|MRS| > \frac{p_1}{p_2} \), maximize \(\sum \) of income.

Optimal consumption will occur where all income is spent on \(x_1 \). That is, \((x_1^*, x_2^*) = \left(\frac{m}{p_1}, 0 \right) \)

\[= (30, 0) \]
$p_1 \uparrow \Rightarrow SE$ leads to an increase in X_1 consumption because X_1 is now relatively more expensive.

When $p_1 \uparrow$, purchasing power declines. Since X_1 is an inferior good, when purchasing power \downarrow, IE leads to an increase in X_1 consumption.

The total effect of the price change depends on which effect dominates.

If $SE > IE \Rightarrow p_1 \uparrow \Rightarrow X_1 \downarrow$

If $IE > SE \Rightarrow p_1 \uparrow \Rightarrow X_1 \uparrow$.

So, it is possible that the consumer consumes more X_1 after the price increase. This happens when $IE > SE$. Such goods are called Giffen goods.
\[U(x_1, x_2) = \ln x_1 + \ln x_2. \]

a) Check if MRS's are equal:

\[\text{MRS}_v = -\frac{\mu_1}{\mu_2} = \left(1 + \frac{x_2}{x_1} \right) \]

\[\text{MRS}_u = -\frac{x_2}{x_1} \]

\[\text{MRS}_v \neq \text{MRS}_u \Rightarrow \text{The functions do not represent the same preferences.} \]

b) \[|\text{MRS}| = \frac{x_2}{x_1} \]

As \[|\text{MRS}| \] declines as \(x_1 \) increases, IC's may be convex. That is, \(\frac{\partial (|\text{MRS}|)}{\partial x_1} = -\frac{x_2}{x_1^2} < 0. \)

\[c) \text{MRS} = \frac{x_2}{x_1}, \text{ so } \text{MRS} = -2 \text{ at } (x_1, x_2) = (2, 4). \]

This means that when he has 2 units of good 1 and 4 units of good 2, John is willing to give up at most 2 units of \(x_2 \) to get 1 more \(x_1 \).

d) For optimality, we need \(|\text{MRS}| = \frac{\bar{p}_1}{\bar{p}_2} \). This means that since \(\frac{\bar{p}_1}{\bar{p}_2} = 1 \), \(x_2 = x_1 \) if \((x_1, x_2) \) is an optimal bundle. Since \(4 \neq 2 \), (2, 4) cannot be optimal at this price ratio. In fact, we have \(|\text{MRS}| > \frac{\bar{p}_1}{\bar{p}_2} \) here.

e) From the tangency condition, \[\text{MRS} = -\frac{\bar{p}_1}{\bar{p}_2}, \Rightarrow \frac{x_2}{x_1} = \frac{\bar{p}_1}{\bar{p}_2} \]

\[x_1 \bar{p}_1 = x_2 \bar{p}_2. \quad (1) \]

We also know that the optimal bundle should satisfy the budget constraint. Therefore, \(\bar{p}_1 x_1 + \bar{p}_2 x_2 = m \) \((2) \).
Plugging (1) into (2), we get:

\[p_1x_1 + p_2x_2 = m \Rightarrow x_1^* = \frac{m}{2p_1}, \quad x_2^* = \frac{m}{2p_2} \]

f) \(m = 100, \quad p_1 = 1, \quad p_2 = 1 \)

\[x_1^* = \frac{100}{2} = 50 \]

\[x_2^* = \frac{100}{2} = 50 \]

g) \(u(50, 50) = \ln(50) + \ln(50) = 2 \ln(50) \)

h) \(p_1 = 2, \quad p_2 = 1 \Rightarrow \quad x_1^* = \frac{100}{2(2)} = 25 \]

\[x_2^* = \frac{100}{2(1)} = 50. \]
\[x_1(p_1, p_2, m) = \frac{2m}{2p_1 + p_2} \]

1) \(x_1\) is a normal good because \(\frac{\partial x}{\partial m} = \frac{2}{2p_1 + p_2} > 0\). That is, as \(m\) \(\uparrow\), \(x_1\) \(\uparrow\).

2) Goods 1 and Goods 2 are complements because
\[\frac{\partial x(p_1, p_2, m)}{\partial p_2} = -2m (2p_1 + p_2)^{-2} < 0. \] That is, as \(p_2\) \(\uparrow\), \(x_1\) decreases.

\[
\begin{align*}
Q &= 400 - 2p_d^d \\
Q &= 3p_s^s \\
\frac{dQ}{dp} &= \frac{\partial Q}{\partial p} \\
\frac{dQ}{dp} &= -2,100 \\
\frac{dQ}{dp} &= -1
\end{align*}
\]

\[Q = 240 \]

\[P = 200 \]

\[S = 80 \]

\[P = p_d^d + 20 \]

\[Q = 3(88) = 264 \]

\[CD = \frac{240, 120}{2} = 240, 60 \]

\[PS = \frac{240, 80}{2} = 240, 40 \]

\[Q = 3(p_d^d + 20) \]

\[400 - 2p_d^d = 3(p_d^d + 20) \]

\[400 - 2p_d^d = 3p_d^d + 60 \]

\[3p_d^d = 340 \Rightarrow p_d^d = 68 \]

\[p_s^s = 88 \]
5- (Continued)

\[
\begin{align*}
P &= 88 \\
P^* &= 80 \\
Q &= 68 \\
S &= 20
\end{align*}
\]